Home
/
Math
/
400 Parker Invested 5000 for 12 Years at 9% Interest Compounded Quarterly. How Much Money Will He Have Made at the End of 12 Years?

Question

400 Parker invested 5000 for 12 years at 9% interest compounded quarterly. How much money will he have made at the end of 12 years? Show all your work.

Solution

Expert Verified
4.1 (240 Votes)
Audrey Elite ยท Tutor for 8 years

Answer

### $14588.79

Explanation

## Step 1: Convert the interest rate to a decimal and find the quarterly interest rate.### The annual interest rate is 9%, which is in decimal form. Since the interest is compounded quarterly, we divide the annual rate by 4 to find the quarterly interest rate: .## Step 2: Calculate the number of compounding periods.### The investment is for 12 years and the interest is compounded quarterly (4 times per year). Therefore, the number of compounding periods is .## Step 3: Calculate the final amount using the compound interest formula.### The formula for compound interest is , where A is the final amount, P is the principal, r is the annual interest rate, n is the number of times interest is compounded per year, and t is the number of years. In this case, 5000 r = 0.09 n = 4 t = 12 A = 5000(1 + \frac{0.09}{4})^{4 \times 12} = 5000(1 + 0.0225)^{48} = 5000(1.0225)^{48} \approx 5000(2.917757) \approx 14588.79$.