Question
2) Using a diagram determine the 6 trigonometric ratios for the angle (7pi )/(6) (do not rationalize the denominator)
Solution
4.4
(174 Votes)
Alexander
Veteran ยท Tutor for 9 years
Answer
### \(\sin\left(\frac{7\pi}{6}\right) = -\frac{1}{2}\), \(\cos\left(\frac{7\pi}{6}\right) = -\frac{\sqrt{3}}{2}\), \(\tan\left(\frac{7\pi}{6}\right) = \frac{1}{\sqrt{3}}\), \(\csc\left(\frac{7\pi}{6}\right) = -2\), \(\sec\left(\frac{7\pi}{6}\right) = -\frac{2}{\sqrt{3}}\), \(\cot\left(\frac{7\pi}{6}\right) = \sqrt{3}\).
Explanation
## Step 1: Determine the Reference Angle### The angle
is in the third quadrant. To find the reference angle, subtract
from
. This gives us a reference angle of
.## Step 2: Identify the Signs of Trigonometric Functions### In the third quadrant, sine and cosine are negative, while tangent is positive. Therefore,
,
,
, and
will be negative, and
and
will be positive.## Step 3: Calculate Sine and Cosecant### For the reference angle
, \(\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}\). Thus, \(\sin\left(\frac{7\pi}{6}\right) = -\frac{1}{2}\) and \(\csc\left(\frac{7\pi}{6}\right) = -2\).## Step 4: Calculate Cosine and Secant### For the reference angle
, \(\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}\). Thus, \(\cos\left(\frac{7\pi}{6}\right) = -\frac{\sqrt{3}}{2}\) and \(\sec\left(\frac{7\pi}{6}\right) = -\frac{2}{\sqrt{3}}\).## Step 5: Calculate Tangent and Cotangent### For the reference angle
, \(\tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}\). Thus, \(\tan\left(\frac{7\pi}{6}\right) = \frac{1}{\sqrt{3}}\) and \(\cot\left(\frac{7\pi}{6}\right) = \sqrt{3}\).