Home
/
Math
/
tu ne t'en souviens plus, va voir dans «le savoir» p. 42 2. pour chacune des fractions suivantes, trouve la fraction équivalente

Question

Tu ne t'en souviens plus, va voir dans «Le savoir» p. 42 2. Pour chacune des fractions suivantes, trouve la fraction équivalente dont le dénominateur est égal à 5 . a) (2)/(10) b) (40)/(25) c) (330)/(150) d) (10)/(15) 3. Pour chacune des fractions suivantes, trouve la fraction équivalente dont le numérateur est égal à 4 . a) (1)/(7)= b) (2)/(3)= c) (8)/(12)= d) (80)/(100)= 4. Complète les expressions suivantes afin d'obtenir des fractions équivalentes. a) (21)/(28)= b) (5)/(4)= 125 _ c) 5_=(45)/(54) d) (10)/(21)= Tu ne t'en souviens plus, va voir dans «Le savoir» p. 42 5. Vérifie à l'aide des produits croisés si les fractions suivantes sont équivalentes. a) (3)/(4) et (75)/(100) b) (2)/(7) et (6)/(21) c) (4)/(5) et (16)/(25) d) (10)/(12) et (25)/(30) e) (5)/(25) et (4)/(20)

Solution

Expert Verified
4.1 (180 Votes)
Luca Veteran · Tutor for 11 years

Answer

2.a) 1/5 b) 8/5 c) 11/5 d) 5/7.5, which reduces to 2/3 3.a) 4/28, which reduces to 1/7 b) 4/6 which simplifies to 2/3c) 4/6 the fractions need to be in simplest form, which simplifies to 2/3d) 4/54.a) 21/28 = 3/4 b) 5/4 = 20/16 c) 5*6 = 45/54d) 10/21 = 40/845.a) Yes, equivalent. (3 * 100 == 75 * 4)b) Yes, equivalent. (2*21 == 7*6)c) Yes, equivalent. (4*25 == 5*16)d) No, not equivalent. (10*30 ≠ 12*25) e) Yes, equivalent. (5*20 == 25*4)

Explanation

The questions are relating to concepts in elementary Mathematics. Question 2 requests equal fractions to given values with denominators set to 5. Likewise, in question 3, similar fractions corresponding to the given values with a numerator as 4 need to be discerned. In Question 4 the task is filling in values to the left-hand side of the fraction equations to equate to the values on the right. The term within the box can be numerator, denominator, or a complete fraction depending upon the question. Question 5 involves the comparison of two fractions to inspect if they're equivalent. This requirement can be attained by "cross-product" or "cross-multiplication" whereby a product of the numerator of the first fraction then multiplied by the expansatu inhibitor of the second fraction is compared to the product of the denominator of the first fraction and the numerator of the second fraction. If the two products are equal, the fractions are equivalent, otherwise, they're different.