Home
/
English
/
given lim_(x rarr7)f(x)=-2 and lim_(x rarr7)g(x)=4 , evaluate: lim_(x rarr7)(g(x)ln(-4f(x)+8))= lim_(x rarr7)(-4g(x)e^(8f(x)))= lim_(x

Question

Given lim_(x rarr7)f(x)=-2 and lim_(x rarr7)g(x)=4 , evaluate: lim_(x rarr7)(g(x)ln(-4f(x)+8))= lim_(x rarr7)(-4g(x)e^(8f(x)))= lim_(x rarr7)(sqrt(-4f(x)+8g(x)))=

Solution

Expert Verified
4.1 (213 Votes)
Lottie Elite ยท Tutor for 8 years

Answer

1. \(4 \ln(8)\) 2. 3.

Explanation

1. To find \(\lim _{x \rightarrow 7}(g(x) \ln (-4 f(x)+8))\), we use the given limits \(\lim_{x \rightarrow 7} f(x) = -2\) and \(\lim_{x \rightarrow 7} g(x) = 4\). The limit of \(-4 f(x) + 8\) as is \(8 - 4(-2) = 8 + 8 = 16\). Therefore, the limit becomes \(4 \ln(16) = 4 \ln(8) = 4 \ln(8)\).2. To find \(\lim _{x \rightarrow 7}\left(-4 g(x) e^{8 f(x)}\right)\), we use the given limits \(\lim_{x \rightarrow 7} f(x) = -2\) and \(\lim_{x \rightarrow 7} g(x) = 4\). The limit becomes .3. To find \(\lim _{x \rightarrow 7}(\sqrt{-4 f(x)+8 g(x)})\), we use the given limits \(\lim_{x \rightarrow 7} f(x) = -2\) and \(\lim_{x \rightarrow 7} g(x) = 4\). The limit of \(-4 f(x) + 8 g(x)\) as is . Therefore, the limit becomes .