Home
/
Math
/
2. 7x^3+6x^2-2x-(9x^2-4x+3) 3 3x(-2x^2-5x+4) 4. (4x-5)(3x+7)

Question

2. 7x^3+6x^2-2x-(9x^2-4x+3) 3 3x(-2x^2-5x+4) 4. (4x-5)(3x+7)

2.
7x^3+6x^2-2x-(9x^2-4x+3)
3 3x(-2x^2-5x+4)
4. (4x-5)(3x+7)

Solution

expert verifiedExpert Verified
4.6(215 Voting)
avatar
DamianVeteran · Tutor for 11 years

Answer

# Explanation:<br />## Step 1: Distribute the negative sign<br />### The negative sign in front of the parenthesis changes the sign of each term inside. The expression becomes $7x^3 + 6x^2 - 2x - 9x^2 + 4x - 3$.<br /><br />## Step 2: Combine like terms<br />### Group and combine terms with the same exponent of $x$. $7x^3$ has no like terms. $6x^2 - 9x^2 = -3x^2$. $-2x + 4x = 2x$. The constant term is $-3$.<br /><br /># Answer:<br />### $7x^3 - 3x^2 + 2x - 3$<br /><br /><br /># Explanation:<br />## Step 1: Apply the distributive property<br />### Multiply $3x$ by each term inside the parenthesis: $3x(-2x^2) + 3x(-5x) + 3x(4)$.<br /><br />## Step 2: Simplify each term<br />### $3x(-2x^2) = -6x^3$, $3x(-5x) = -15x^2$, and $3x(4) = 12x$.<br /><br /># Answer:<br />### $-6x^3 - 15x^2 + 12x$<br /><br /><br /># Explanation:<br />## Step 1: Use the FOIL method<br />### FOIL stands for First, Outer, Inner, Last. Multiply the First terms: $(4x)(3x) = 12x^2$. Multiply the Outer terms: $(4x)(7) = 28x$. Multiply the Inner terms: $(-5)(3x) = -15x$. Multiply the Last terms: $(-5)(7) = -35$.<br /><br />## Step 2: Combine like terms<br />### Combine the $x$ terms: $28x - 15x = 13x$.<br /><br /># Answer:<br />### $12x^2 + 13x - 35$<br />
Click to rate: