Home
/
Math
/
Find X' if radius R=1.25units and angle A=15 degrees. Your Answer: square Answer

Question

Find X' if radius R=1.25units and angle A=15 degrees. Your Answer: square Answer

Find X' if radius R=1.25units and angle A=15 degrees.
Your Answer:
square 
Answer

Solution

expert verifiedExpert Verified
4.3(293 Voting)
avatar
PiperProfessional · Tutor for 6 years

Answer

To find \( X \), we need to determine what \( X \) represents in the context of a circle with radius \( R = 1.25 \) units and an angle \( A = 15 \) degrees. Assuming \( X \) is the arc length corresponding to the angle \( A \), we can use the formula for arc length:<br /><br />\[<br />X = R \times \theta<br />\]<br /><br />where \( \theta \) is the angle in radians. First, we need to convert the angle from degrees to radians:<br /><br />\[<br />\theta = \frac{A \times \pi}{180} = \frac{15 \times \pi}{180} = \frac{\pi}{12} \text{ radians}<br />\]<br /><br />Now, substitute the values into the arc length formula:<br /><br />\[<br />X = 1.25 \times \frac{\pi}{12}<br />\]<br /><br />\[<br />X = \frac{1.25\pi}{12}<br />\]<br /><br />Simplifying further:<br /><br />\[<br />X = \frac{1.25 \times 3.141592653589793}{12} \approx 0.3272<br />\]<br /><br />Thus, the arc length \( X \) is approximately \( 0.3272 \) units.<br /><br />Your Answer:<br />\(\boxed{0.3272}\)
Click to rate: