Question
7. Express as a single logarithm. a) log5+log11 b) log20-log4 log_(5)6+log_(5)8-log_(5)12 d) 2log3+4log2
Solution
Expert Verified
4.6(221 Voting)
PalmerProfessional · Tutor for 6 years
Answer
### a) $\log 55$<br />### b) $\log 5$<br />### c) $\log_{5}4$<br />### d) $\log 144$
Explain
## Step 1: Applying the Product Property of Logarithms<br />### The product property of logarithms states that $\log_b(M \cdot N) = \log_b(M) + \log_b(N)$. We can apply this property to combine the sum of logarithms into a single logarithm.<br />## Step 2: Applying the Quotient Property of Logarithms<br />### The quotient property of logarithms states that $\log_b(\frac{M}{N}) = \log_b(M) - \log_b(N)$. We can apply this property to combine the difference of logarithms into a single logarithm.<br />## Step 3: Applying the Power Property of Logarithms<br />### The power property of logarithms states that $\log_b(M^p) = p \cdot \log_b(M)$. We can apply this property to simplify logarithms with coefficients.<br />## Step 4: Combining the Properties<br />### We can combine the product, quotient, and power properties to simplify more complex logarithmic expressions.
Click to rate: