Question
5. [-/1 Points] Divide. (-144s^3)/(-48r^2)s^(2) square Divide. (35a^4b^5c^6)/(56a^4)b^(2c^8) square
Solution
Expert Verified
4.7(243 Voting)
MiaMaster · Tutor for 5 years
Answer
### $\frac{3s}{r^2}$<br />### $\frac{5b^3}{8c^2}$
Explain
## Step 1: Simplify the first expression<br />### Divide the coefficients and subtract the exponents of the like variables. $\frac{-144s^3}{-48r^2s^2} = \frac{-144}{-48} \cdot \frac{s^3}{r^2s^2} = 3 \cdot \frac{s^{3-2}}{r^2} = \frac{3s}{r^2}$<br /><br />## Step 2: Simplify the second expression<br />### Divide the coefficients and subtract the exponents of the like variables. $\frac{35a^4b^5c^6}{56a^4b^2c^8} = \frac{35}{56} \cdot \frac{a^4}{a^4} \cdot \frac{b^5}{b^2} \cdot \frac{c^6}{c^8} = \frac{5}{8} \cdot a^{4-4} \cdot b^{5-2} \cdot c^{6-8} = \frac{5}{8} \cdot a^0 \cdot b^3 \cdot c^{-2} = \frac{5b^3}{8c^2}$
Click to rate: