Question
Suppose that the functions p and q are defined as follows. p(x)=2x-1 q(x)=x^2 Find the following. (qcdot p)(-2)= square (pcdot q)(-2)= square
Solution
Expert Verified
3.6(190 Voting)
NathanVeteran · Tutor for 12 years
Answer
### $(q \cdot p)(-2) = -20$, $(p \cdot q)(-2) = -20$
Explain
## Step 1: Calculate $(q \cdot p)(x)$<br />### To find $(q \cdot p)(x)$, multiply $q(x)$ by $p(x)$. Substitute $q(x) = x^2$ and $p(x) = 2x - 1$ into the expression:<br />\[<br />(q \cdot p)(x) = q(x) \cdot p(x) = (x^2) \cdot (2x - 1)<br />\]<br />Apply the distributive property:<br />\[<br />= x^2 \cdot 2x - x^2 \cdot 1 = 2x^3 - x^2<br />\]<br /><br />## Step 2: Evaluate $(q \cdot p)(-2)$<br />### Substitute $x = -2$ into the expression $2x^3 - x^2$:<br />\[<br />(q \cdot p)(-2) = 2(-2)^3 - (-2)^2 = 2(-8) - 4 = -16 - 4 = -20<br />\]<br /><br />## Step 3: Calculate $(p \cdot q)(x)$<br />### To find $(p \cdot q)(x)$, multiply $p(x)$ by $q(x)$. Substitute $p(x) = 2x - 1$ and $q(x) = x^2$ into the expression:<br />\[<br />(p \cdot q)(x) = p(x) \cdot q(x) = (2x - 1) \cdot (x^2)<br />\]<br />Apply the distributive property:<br />\[<br />= 2x \cdot x^2 - 1 \cdot x^2 = 2x^3 - x^2<br />\]<br /><br />## Step 4: Evaluate $(p \cdot q)(-2)$<br />### Substitute $x = -2$ into the expression $2x^3 - x^2$:<br />\[<br />(p \cdot q)(-2) = 2(-2)^3 - (-2)^2 = 2(-8) - 4 = -16 - 4 = -20<br />\]
Click to rate: