Home
/
Math
/
Factor 9x^2-4y^2 a) (3x-2y)^2 b) (3x-2)(3x+2) c) None of these. d) (3x-2y)(3x+2y)

Question

Factor 9x^2-4y^2 a) (3x-2y)^2 b) (3x-2)(3x+2) c) None of these. d) (3x-2y)(3x+2y)

Factor 9x^2-4y^2
a) (3x-2y)^2
b) (3x-2)(3x+2)
c) None of these.
d) (3x-2y)(3x+2y)

Solution

expert verifiedExpert Verified
3.5(287 Voting)
avatar
TeaganProfessional · Tutor for 6 years

Answer

### d) $(3x-2y)(3x+2y)$

Explain

## Step 1: Identifying the pattern<br />### The given expression $9x^2 - 4y^2$ is a difference of two squares, since $9x^2 = (3x)^2$ and $4y^2 = (2y)^2$.<br /><br />## Step 2: Applying the difference of squares formula<br />### The difference of squares formula states that $a^2 - b^2 = (a+b)(a-b)$. In our case, $a = 3x$ and $b = 2y$. Therefore, $9x^2 - 4y^2 = (3x)^2 - (2y)^2 = (3x + 2y)(3x - 2y)$.<br /><br />## Step 3: Verifying the factorization<br />### We can verify the factorization by expanding the result: $(3x+2y)(3x-2y) = (3x)(3x) + (3x)(-2y) + (2y)(3x) + (2y)(-2y) = 9x^2 - 6xy + 6xy - 4y^2 = 9x^2 - 4y^2$.
Click to rate: