Question
Sample Response: First, look at the side lengths a,b. and c, where cis the longest. Then take the sum of a squared and b squared and compare it to c squared. If they are equal, the triangle is a right triangle. If c squared is less than a squared plus b squared, the triangle is acute. If c squared is greater than a squared plus b squared, the triangle is obtuse. What did you include in your response? Check all that apply. D If a^2+b^2=c^2 the triangle is right. If c^2lt a^2+b^2 the triangle is acute. If c^2gt a^2+b^2 the triangle is obtuse.
Solution
Expert Verified
4.5(344 Voting)
SandraProfessional · Tutor for 6 years
Answer
### 120 miles
Explain
## Step 1: Identifying the given information<br />### We are given a right triangle with sides 52 mi, 48 mi, and 'b'. The side with length 52 mi is the hypotenuse (corresponding side of the right angle). We need to find the perimeter.<br /><br />## Step 2: Finding the missing side<br />### Using the Pythagorean theorem ($a^2 + b^2 = c^2$), where $a = 48$ mi and $c = 52$ mi (hypotenuse), we can find the length of side 'b'.<br />$48^2 + b^2 = 52^2$<br />$2304 + b^2 = 2704$<br />$b^2 = 2704 - 2304$<br />$b^2 = 400$<br />$b = \sqrt{400}$<br />$b = 20$ mi<br /><br />## Step 3: Calculating the perimeter<br />### The perimeter of a triangle is the sum of its sides. Perimeter = $a + b + c = 48 + 20 + 52 = 120$ mi.
Click to rate: