Home
/
Math
/
516 x+7=19 517 y+2=-6 518. a+(1)/(3)=(5)/(3) 519 n+3.6=5.1 In the following exercises, solve each equation using the Addition Property of Equality. 520 u-7=10 521. x-9=-4 522 c-(3)/(11)=(9)/(11) 523 p-4.8=14 In the following exercises, solve each equation. 524 n-12=32 525 y+16=-9 526. f+(2)/(3)=4 527 d-3.9=8.2

Question

516 x+7=19 517 y+2=-6 518. a+(1)/(3)=(5)/(3) 519 n+3.6=5.1 In the following exercises, solve each equation using the Addition Property of Equality. 520 u-7=10 521. x-9=-4 522 c-(3)/(11)=(9)/(11) 523 p-4.8=14 In the following exercises, solve each equation. 524 n-12=32 525 y+16=-9 526. f+(2)/(3)=4 527 d-3.9=8.2

516 x+7=19
517 y+2=-6
518. a+(1)/(3)=(5)/(3)
519 n+3.6=5.1
In the following exercises, solve each equation using
the Addition Property of Equality.
520 u-7=10
521. x-9=-4
522 c-(3)/(11)=(9)/(11)
523 p-4.8=14
In the following exercises, solve each equation.
524 n-12=32
525 y+16=-9
526. f+(2)/(3)=4
527 d-3.9=8.2

Solution

expert verifiedExpert Verified
4.2(353 Voting)
avatar
NathanMaster · Tutor for 5 years

Answer

### 516. $x = 12$<br />### 517. $y = -8$<br />### 518. $a = \frac{4}{3}$<br />### 519. $n = 1.5$<br />### 520. $u = 17$<br />### 521. $x = 5$<br />### 522. $c = \frac{12}{11}$<br />### 523. $p = 18.8$<br />### 524. $n = 44$<br />### 525. $y = -25$<br />### 526. $f = \frac{10}{3}$<br />### 527. $d = 12.1$

Explain

## Step 1: Isolate the variable x<br />### Subtract 7 from both sides of the equation $x + 7 = 19$. This gives $x + 7 - 7 = 19 - 7$, which simplifies to $x = 12$.<br /><br />## Step 2: Isolate the variable y<br />### Subtract 2 from both sides of the equation $y + 2 = -6$. This gives $y + 2 - 2 = -6 - 2$, which simplifies to $y = -8$.<br /><br />## Step 3: Isolate the variable a<br />### Subtract $\frac{1}{3}$ from both sides of the equation $a + \frac{1}{3} = \frac{5}{3}$. This gives $a + \frac{1}{3} - \frac{1}{3} = \frac{5}{3} - \frac{1}{3}$, which simplifies to $a = \frac{4}{3}$.<br /><br />## Step 4: Isolate the variable n<br />### Subtract 3.6 from both sides of the equation $n + 3.6 = 5.1$. This gives $n + 3.6 - 3.6 = 5.1 - 3.6$, which simplifies to $n = 1.5$.<br /><br />## Step 5: Isolate the variable u<br />### Add 7 to both sides of the equation $u - 7 = 10$. This gives $u - 7 + 7 = 10 + 7$, which simplifies to $u = 17$.<br /><br />## Step 6: Isolate the variable x<br />### Add 9 to both sides of the equation $x - 9 = -4$. This gives $x - 9 + 9 = -4 + 9$, which simplifies to $x = 5$.<br /><br />## Step 7: Isolate the variable c<br />### Add $\frac{3}{11}$ to both sides of the equation $c - \frac{3}{11} = \frac{9}{11}$. This gives $c - \frac{3}{11} + \frac{3}{11} = \frac{9}{11} + \frac{3}{11}$, which simplifies to $c = \frac{12}{11}$.<br /><br />## Step 8: Isolate the variable p<br />### Add 4.8 to both sides of the equation $p - 4.8 = 14$. This gives $p - 4.8 + 4.8 = 14 + 4.8$, which simplifies to $p = 18.8$.<br /><br />## Step 9: Isolate the variable n<br />### Add 12 to both sides of the equation $n - 12 = 32$. This gives $n - 12 + 12 = 32 + 12$, which simplifies to $n = 44$.<br /><br />## Step 10: Isolate the variable y<br />### Subtract 16 from both sides of the equation $y + 16 = -9$. This gives $y + 16 - 16 = -9 - 16$, which simplifies to $y = -25$.<br /><br />## Step 11: Isolate the variable f<br />### Subtract $\frac{2}{3}$ from both sides of the equation $f + \frac{2}{3} = 4$. This gives $f + \frac{2}{3} - \frac{2}{3} = 4 - \frac{2}{3}$, which simplifies to $f = \frac{10}{3}$.<br /><br />## Step 12: Isolate the variable d<br />### Add 3.9 to both sides of the equation $d - 3.9 = 8.2$. This gives $d - 3.9 + 3.9 = 8.2 + 3.9$, which simplifies to $d = 12.1$.
Click to rate: