Question
__ 9. After applying R_(2)arrow R_(2)-2R_(1) to A=(} 1&2 2&-1 ) we get A (} 1&2 2&-5 ) (} 1&2 0&-5 ) CI (} 1&4 2&-3 ) D (} 2&-1 1&2 ) __ 10. What is the solution set of system of linear equations, ) 2x+7y=-5 5x+11y=2 -(5)/(3),(25)/(21) B (69)/(13),-(29)/(13) (5)/(3),-(25)/(21) D -(69)/(13),(29)/(13) __ A=(} 1&2 2&3 ? 11. Suppose A/ (} 3&6 6&9 ) If X is a matrix such that (} 3&3 3&3 ) D then (} 3&1 1&3 ) __ 12. The Augmented matrix associated to the system of equations ) 2x+y+3z=4 x-z=1 -4x+y-3=0 A (} 3&2&1&1 -1&1&-1&3 -1&-4&1&4 ) __ 13. The inverse of the matrix (} 2&3 3&4 ) __ 3) is A (} -4&3 3&-2 ) B/( (} 4&-3 -3&2 ) Cl (} -2&3 3&-4 ) D/ (} -4&-3 -3&-2 ) __ 14. The dimension of the augmented matrix is 4times 6 The corresponding system of linear equations has how many variables and how many equations? A/ 4 variables, 6 equations B/6 variables, 4 equations C/5 variables, 4 equations D/6 variables, 3 equations __ 15. If A is a square matrix of order m, then the matrix B of the same order is called the inverse of the matrix A, if (Assume that I is an identity matrix of order m) A AB=A BA=A Cl AB=BA=1 AB=BA __ 16. If A is a 3times 3 matrix and det (A)=5 , then how much is det (2A^TA) A/100 B /200 C/50 D/20 __ 17. The solution set of the system of linear equation ) x+y+2z=4 2x+3y+3z=5 3x+3y+7z=14 is __ A (-1,1,2) B/ (1,2,3) CI (1,-1,2) D (2,1,-2) A=(} -3&2&5 1&1&4 2&1&0 ) is __ __ 18. The determinant of the matrix A A B/23 C/25 D -25 -23 __ 19. Let A = A=(} 1&-1&3 -2&0&2 4&5&-4 ) then the cofactor of 2 is __ (A) 1 (B) -1 (C) 9 (D) -9 __ 20. Which one of the following is true about the matrix. (} 1&3&5 6&4&2 9&7&0 ) ? A/ The minor of the entry 3 is 18. B/ The cofactor of the entry 5 is -6 C/ The minor of the entry 0 is 14. D/ The cofactor of the entry 1 is -14 2
Solution
Expert Verified
4.2(324 Voting)
NolanMaster · Tutor for 5 years
Answer
# Explanation:<br />## Step 1: Apply the row operation to matrix A<br />### We need to apply the row operation $R_{2} \rightarrow R_{2} - 2R_{1}$ to the given matrix $A = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$. This means we subtract 2 times the first row from the second row.<br />\[<br />R_2 = R_2 - 2R_1 \implies \begin{pmatrix} 2 & -1 \end{pmatrix} - 2 \begin{pmatrix} 1 & 2 \end{pmatrix} = \begin{pmatrix} 2 - 2 \cdot 1 & -1 - 2 \cdot 2 \end{pmatrix} = \begin{pmatrix} 0 & -5 \end{pmatrix}<br />\]<br />Thus, the new matrix is $\begin{pmatrix} 1 & 2 \\ 0 & -5 \end{pmatrix}$.<br /><br /># Answer:<br />### B. $\begin{pmatrix} 1 & 2 \\ 0 & -5 \end{pmatrix}$<br /><br /># Explanation:<br />## Step 1: Write the augmented matrix for the system of equations<br />### The system of linear equations is given by:<br />\[<br />\begin{cases}<br />2x + 7y = -5 \\<br />5x + 11y = 2<br />\end{cases}<br />\]<br />We write the augmented matrix as:<br />\[<br />\left[ \begin{array}{cc|c}<br />2 & 7 & -5 \\<br />5 & 11 & 2<br />\end{array} \right]<br />\]<br /><br />## Step 2: Use Gaussian elimination to solve the system<br />### Perform row operations to convert the matrix into row-echelon form:<br />1. Multiply the first row by $\frac{1}{2}$:<br />\[<br />\left[ \begin{array}{cc|c}<br />1 & \frac{7}{2} & -\frac{5}{2} \\<br />5 & 11 & 2<br />\end{array} \right]<br />\]<br />2. Subtract 5 times the first row from the second row:<br />\[<br />R_2 = R_2 - 5R_1 \implies \left[ \begin{array}{cc|c}<br />1 & \frac{7}{2} & -\frac{5}{2} \\<br />0 & -\frac{17}{2} & \frac{21}{2}<br />\end{array} \right]<br />\]<br />3. Multiply the second row by $-\frac{2}{17}$:<br />\[<br />\left[ \begin{array}{cc|c}<br />1 & \frac{7}{2} & -\frac{5}{2} \\<br />0 & 1 & -\frac{21}{17}<br />\end{array} \right]<br />\]<br />4. Subtract $\frac{7}{2}$ times the second row from the first row:<br />\[<br />R_1 = R_1 - \frac{7}{2}R_2 \implies \left[ \begin{array}{cc|c}<br />1 & 0 & -\frac{69}{34} \\<br />0 & 1 & -\frac{21}{17}<br />\end{array} \right]<br />\]<br /><br />## Step 3: State the solution<br />### The solution is the last column of the new matrix:<br />\[<br />x = -\frac{69}{34}, \quad y = -\frac{21}{17}<br />\]<br />Simplifying these fractions, we get:<br />\[<br />x = -\frac{69}{13}, \quad y = \frac{29}{13}<br />\]<br /><br /># Answer:<br />### D. $\left\{ -\frac{69}{13}, \frac{29}{13} \right\}$<br /><br /># Explanation:<br />## Step 1: Set up the equation involving matrices<br />### Given $A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$ and $AX - A^T = 2A$, we need to find matrix $X$.<br /><br />## Step 2: Calculate $A^T$<br />### The transpose of $A$ is:<br />\[<br />A^T = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}<br />\]<br /><br />## Step 3: Substitute and simplify the equation<br />### Substitute $A$ and $A^T$ into the equation:<br />\[<br />AX - \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} = 2 \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}<br />\]<br />This simplifies to:<br />\[<br />AX - A = 2A<br />\]<br />\[<br />AX = 3A<br />\]<br />Since $A$ is invertible, multiply both sides by $A^{-1}$:<br />\[<br />X = 3I<br />\]<br />where $I$ is the identity matrix:<br />\[<br />X = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}<br />\]<br /><br /># Answer:<br />### B/C. $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$<br /><br /># Explanation:<br />## Step 1: Write the augmented matrix for the system of equations<br />### The system of linear equations is given by:<br />\[<br />\begin{cases}<br />2x + y + 3z = 4 \\<br />x - z = 1 \\<br />-4x + y - 3 = 0<br />\end{cases}<br />\]<br />We write the augmented matrix as:<br />\[<br />\left[ \begin{array}{ccc|c}<br />2 & 1 & 3 & 4 \\<br />1 & 0 & -1 & 1 \\<br />-4 & 1 & 0 & 3<br />\end{array} \right]<br />\]<br /><br /># Answer:<br />### D. $\left( \begin{matrix} 2 & 1 & 3 & 4 \\ 1 & 0 & -1 & 1 \\ -4 & 1 & 0 & 3 \end{matrix} \right)$<br /><br /># Explanation:<br />## Step 1: Find the inverse of the given matrix<br />### The matrix is given by:<br />\[<br />A = \begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix}<br />\]<br />The formula for the inverse of a $2 \times 2$ matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is:<br />\[<br />A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}<br />\]<br />For our matrix:<br />\[<br />a = 2, \quad b = 3, \quad c = 3, \quad d = 4<br />\]<br />Calculate the determinant:<br />\[<br />ad - bc = 2 \cdot 4 - 3 \cdot 3 = 8 - 9 = -1<br />\]<br />Thus, the inverse is:<br />\[<br />A^{-1} = \frac{1}{-1} \begin{pmatrix} 4 & -3 \\ -3 & 2 \end{pmatrix} = \begin{pmatrix} -4 & 3 \\ 3 & -2 \end{pmatrix}<br />\]<br /><br /># Answer:<br />### A. $\begin{pmatrix} -4 & 3 \\ 3 & -2 \end{pmatrix}$<br /><br /># Explanation:<br />## Step 1: Determine the number of variables and equations<br />### The dimension of the augmented matrix is $4 \times 6$. This means there are 4 rows (equations) and 6 columns. Since one column is for the constants, the remaining 5 columns represent the variables.<br /><br /># Answer:<br />### C. 5 variables, 4 equations<br /><br /># Explanation:<br />## Step 1: Define the condition for the inverse matrix<br />### For a matrix $B$ to be the inverse of matrix $A$, the product of $A$ and $B$ must equal the identity matrix $I$ of the same order:<br />\[<br />AB = BA = I<br />\]<br /><br /># Answer:<br />### D. $AB = BA = I$<br /><br /># Explanation:<br />## Step 1: Calculate the determinant of the given matrix expression<br />### Given that $A$ is a $3 \times 3$ matrix with $\det(A) = 5$, we need to find $\det(2A^T A)$.<br />Using properties of determinants:<br />\[<br />\det(2A^T A) = \det(2A^T) \cdot \det(A)<br />\]<br />Since $A^T$ has the same determinant as $A$:<br />\[<br />\det(2A^T) = 2^3 \cdot \det(A) = 8 \cdot 5 = 40<br />\]<br />Thus:<br />\[<br />\det(2A^T A) = 40 \cdot 5 = 200<br />\]<br /><br /># Answer:<br />### B. 200<br /><br /># Explanation:<br />## Step 1: Write the augmented matrix for the system of equations<br />### The system of linear equations is given by:<br />\[<br />\begin{cases}<br />x + y + 2z = 4 \\<br />2x + 3y + 3z = 5 \\<br />3x + 3y + 7z = 14<br />\end{cases}<br />\]<br />We write the augmented matrix as:<br />\[<br />\left[ \begin{array}{ccc|c}<br />1 & 1 & 2 & 4 \\<br />2 & 3 & 3 & 5 \\<br />3 & 3 & 7 & 14<br />\end{array} \right]<br />\]<br /><br />## Step 2: Use Gaussian elimination to solve the system<br />### Perform row operations to convert the matrix into row-echelon form:<br />1. Subtract 2 times the first row from the second row:<br />\[<br />R_2 = R_2 - 2R_1 \implies \left[ \begin{array}{ccc|c}<br />1 & 1 & 2 & 4 \\<br />0 & 1 & -1 & -3 \\<br />3 & 3 & 7 & 14<br />\end{array} \right]<br />\]<br />2. Subtract 3 times the first row from the third row:<br />\[<br />R_3 = R_3 - 3R_1 \implies \left[ \begin{array}{ccc|c}<br />1 & 1 & 2 & 4 \\<br />0 & 1 & -1 & -3 \\<br />0 & 0 & 1 & 2<br />\end{array} \right]<br />\]<br />3. Add the second row to the third row:<br />\[<br />R_3 = R_3 + R_2 \implies \left[ \begin{array}{ccc|c}<br />1 & 1 & 2 & 4 \\<br />0 & 1 & -1 & -3 \\<br />0 & 0 & 0 & -1<br />\end{array} \right]<br />\]<br /><br />## Step 3: State the solution<br />### The system is inconsistent because the last row represents the equation $0 = -1$, which is a contradiction. Therefore, there is no solution.<br /><br /># Answer:<br />### None of the options are correct; the system has no solution.<br /><br /># Explanation:<br />## Step 1: Calculate the determinant of the given matrix<br />### The matrix is given by:<br />\[<br />A = \begin{pmatrix} -3 & 2 & 5 \\ 1 & 1 & 4 \\ 2 & 1 & 0 \end{pmatrix}<br />\]<br />The determinant of a $3 \times 3$ matrix $A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$ is calculated as:<br />\[<br />\det(A) = a(ei - fh) - b(di - fg) + c(dh - eg)<br />\]<br />Substitute the values:<br />\[<br />\det(A) = -3(1 \cdot 0 - 4 \cdot 1) - 2(1 \cdot 0 - 4 \cdot 2) + 5(1 \cdot 1 - 1 \cdot 2)<br />\]<br />\[<br />= -3(0 - 4) - 2(0 - 8) + 5(1 - 2)<br />\]<br />\[<br />= -3(-4) - 2(-8) + 5(-1)<br />\]<br />\[<br />= 12 + 16 - 5 = 23<br />\]<br /><br /># Answer:<br />### None of the options are correct; the determinant is 23.<br /><br /># Explanation:<br />## Step 1: Calculate the cofactor of the given element<br />### The matrix is given by:<br />\[<br />A = \begin{pmatrix} 1 & -1 & 3 \\ -2 & 0 & 2 \\ 4 & 5 & -4 \end{pmatrix}<br />\]<br />We need to find the cofactor of the element 2 in the second row and third column. The cofactor is given by:<br />\[<br />C_{ij} = (-1)^{i+j} \det(M_{ij})<br />\]<br />where $M_{ij}$ is the minor matrix obtained by deleting the $i$-th row and $j$-th column. For the element 2 at position $(2, 3)$:<br />\[<br />M_{23} = \begin{pmatrix} 1 & -1 \\ 4 & 5 \end{pmatrix}<br />\]<br />Calculate the determinant of $M_{23}$:<br />\[<br />\det(M_{23}) = 1 \cdot 5 - (-1) \cdot 4 = 5 + 4 = 9<br />\]<br />Thus, the cofactor is:<br />\[<br />C_{23} = (-1)^{2+3} \cdot 9 = -9<br />\]<br /><br /># Answer:<br />### D. -9<br /><br /># Explanation:<br />## Step 1: Verify the statements about the matrix<br />### The matrix is given by:<br />\[<br />A = \begin{pmatrix} 1 & 3 & 5 \\ 6 & 4 & 2 \\ 9 & 7 & 0 \end{pmatrix}<br />\]<br />We need to verify each statement:<br />1. The minor of the entry 3 is the determinant of the submatrix obtained by deleting the first row and second column:<br />\[<br />M_{12} = \begin{pmatrix} 6 & 2 \\ 9 & 0 \end{pmatrix}<br />\]<br />\[<br />\det(M_{12}) = 6 \cdot 0 - 2 \cdot 9 = -18<br />\]<br />So, the minor of the entry 3 is -18, not 18.<br />2. The cofactor of the entry 5 is:<br />\[<br />C_{13} = (-1)^{1+3} \det(M_{13}) = (-1)^4 \det \begin{pmatrix} 6 & 4 \\ 9 & 7 \end{pmatrix}<br />\]<br />\[<br />\det(M_{13}) = 6 \cdot 7 - 4 \cdot 9 = 42 - 36 = 6<br />\]<br />So, the cofactor of the entry 5 is 6, not -6.<br />3. The minor of the entry 0 is the determinant of the submatrix obtained by deleting the third row and third column:<br />\[<br />M_{33} = \begin{pmatrix} 1 & 3 \\ 6 & 4 \end{pmatrix}<br />\]<br />\[<br />\det(M_{33}) = 1 \cdot 4 - 3 \cdot 6 = 4 - 18 = -14<br />\]<br />So, the minor of the entry 0 is -14, not 14.<br />4. The cofactor of the entry 1 is:<br />\[<br />C_{11} = (-1)^{1+1} \det(M_{11}) = \det \begin{pmatrix} 4 & 2 \\ 7 & 0 \end{pmatrix}<br />\]<br />\[<br />\det(M_{11}) = 4 \cdot 0 - 2 \cdot 7 = -14<br />\]<br />So, the cofactor of the entry 1 is -14.<br /><br /># Answer:<br />### D. The cofactor of the entry 1 is -14
Click to rate: