Home
/
Math
/
e) Suppose that x_(1),x_(2),L,x_(k) occur with frequencies f_(1),f_(2),L,f_(k) , respectively. Let d_(j)=x_(j)-A denote the deviation of the j"observation x_(j),j=1,2,ldots ,k from a number A.. Prove that i) bar (x)=A+bar (d) (2 Marks) ii) s^2=(sum _(j-1)^kf_(j)d_(j)^2-nbar (d)^2)/(n-1) where n=sum _(j=1)^kf_(j) and bar (d)=(1)/(n)sum _(j=1)^kf_(j)d_(j) (3 Marks)

Question

e) Suppose that x_(1),x_(2),L,x_(k) occur with frequencies f_(1),f_(2),L,f_(k) , respectively. Let d_(j)=x_(j)-A denote the deviation of the j"observation x_(j),j=1,2,ldots ,k from a number A.. Prove that i) bar (x)=A+bar (d) (2 Marks) ii) s^2=(sum _(j-1)^kf_(j)d_(j)^2-nbar (d)^2)/(n-1) where n=sum _(j=1)^kf_(j) and bar (d)=(1)/(n)sum _(j=1)^kf_(j)d_(j) (3 Marks)

e) Suppose that x_(1),x_(2),L,x_(k) occur with frequencies f_(1),f_(2),L,f_(k) , respectively. Let
d_(j)=x_(j)-A denote the deviation of the j"observation x_(j),j=1,2,ldots ,k
from a number A.. Prove that
i) bar (x)=A+bar (d)
(2 Marks)
ii)
s^2=(sum _(j-1)^kf_(j)d_(j)^2-nbar (d)^2)/(n-1)
where n=sum _(j=1)^kf_(j) and bar (d)=(1)/(n)sum _(j=1)^kf_(j)d_(j)
(3 Marks)

Solution

expert verifiedExpert Verified
4.6(301 Voting)
avatar
JarvisMaster · Tutor for 5 years

Answer

**i) Proof:**<br /><br />We are given that *d<sub>j</sub> = x<sub>j</sub> - A*. We want to prove *x̄ = A + d̄*.<br /><br />By definition, the weighted mean *x̄* is:<br /><br />*x̄ = (Σf<sub>j</sub>x<sub>j</sub>) / n*<br /><br />Substitute *x<sub>j</sub> = d<sub>j</sub> + A*:<br /><br />*x̄ = (Σf<sub>j</sub>(d<sub>j</sub> + A)) / n*<br /><br />Distribute the summation:<br /><br />*x̄ = (Σf<sub>j</sub>d<sub>j</sub> + Σf<sub>j</sub>A) / n*<br /><br />Since *A* is a constant, we can factor it out of the summation:<br /><br />*x̄ = (Σf<sub>j</sub>d<sub>j</sub> + AΣf<sub>j</sub>) / n*<br /><br />We know that *Σf<sub>j</sub> = n*, so:<br /><br />*x̄ = (Σf<sub>j</sub>d<sub>j</sub>) / n + (An) / n*<br /><br />*x̄ = (Σf<sub>j</sub>d<sub>j</sub>) / n + A*<br /><br />By definition, *d̄ = (Σf<sub>j</sub>d<sub>j</sub>) / n*, therefore:<br /><br />*x̄ = d̄ + A*<br /><br /><br />**ii) Proof:**<br /><br />We want to prove *s² = (Σf<sub>j</sub>d<sub>j</sub>² - nd̄²) / (n - 1)*.<br /><br />By definition, the variance *s²* is:<br /><br />*s² = (Σf<sub>j</sub>(x<sub>j</sub> - x̄)²) / (n - 1)*<br /><br />Substitute *x<sub>j</sub> = d<sub>j</sub> + A* and *x̄ = d̄ + A*:<br /><br />*s² = (Σf<sub>j</sub>((d<sub>j</sub> + A) - (d̄ + A))²) / (n - 1)*<br /><br />Simplify inside the parentheses:<br /><br />*s² = (Σf<sub>j</sub>(d<sub>j</sub> - d̄)²) / (n - 1)*<br /><br />Expand the square:<br /><br />*s² = (Σf<sub>j</sub>(d<sub>j</sub>² - 2d<sub>j</sub>d̄ + d̄²)) / (n - 1)*<br /><br />Distribute the summation:<br /><br />*s² = (Σf<sub>j</sub>d<sub>j</sub>² - 2d̄Σf<sub>j</sub>d<sub>j</sub> + d̄²Σf<sub>j</sub>) / (n - 1)*<br /><br />We know that *Σf<sub>j</sub> = n* and *d̄ = (Σf<sub>j</sub>d<sub>j</sub>) / n*, so *Σf<sub>j</sub>d<sub>j</sub> = nd̄*:<br /><br />*s² = (Σf<sub>j</sub>d<sub>j</sub>² - 2d̄(nd̄) + d̄²n) / (n - 1)*<br /><br />Simplify:<br /><br />*s² = (Σf<sub>j</sub>d<sub>j</sub>² - 2nd̄² + nd̄²) / (n - 1)*<br /><br />*s² = (Σf<sub>j</sub>d<sub>j</sub>² - nd̄²) / (n - 1)*<br /><br /><br />Therefore, both parts of the question are proven.<br />
Click to rate: