Home
/
Math
/
Quadraties Test 2 Quiz Combo 1. For each of the following, determine: i) the y-intercept iii) the x-intercepts (zeros) the vertex (a) y=9x^2-90x ii) the equation in factored form (factor it) iv) the axis of symmetry vi) sketch of the graph showing the above features (b) y=9x^2-81 (c) y=9x^2+23x-6 (d) y=9x^2+18x-27

Question

Quadraties Test 2 Quiz Combo 1. For each of the following, determine: i) the y-intercept iii) the x-intercepts (zeros) the vertex (a) y=9x^2-90x ii) the equation in factored form (factor it) iv) the axis of symmetry vi) sketch of the graph showing the above features (b) y=9x^2-81 (c) y=9x^2+23x-6 (d) y=9x^2+18x-27

Quadraties Test 2 Quiz Combo
1. For each of the following, determine:
i) the y-intercept
iii) the x-intercepts (zeros)
the vertex
(a) y=9x^2-90x
ii) the equation in factored form (factor it)
iv) the axis of symmetry
vi) sketch of the graph showing the above features
(b) y=9x^2-81
(c) y=9x^2+23x-6
(d) y=9x^2+18x-27

Solution

expert verifiedExpert Verified
4.6(344 Voting)
avatar
RyleighElite · Tutor for 8 years

Answer

**1(a) *y* = 9*x*² - 90*x***<br /><br />* **i) y-intercept:** Set *x* = 0. *y* = 9(0)² - 90(0) = 0. The y-intercept is 0.<br /><br />* **ii) Factored form:** *y* = 9*x*(*x* - 10)<br /><br />* **iii) x-intercepts (zeros):** Set *y* = 0. 9*x*(*x* - 10) = 0. This gives *x* = 0 and *x* = 10. The x-intercepts are 0 and 10.<br /><br />* **iv) Axis of symmetry:** The axis of symmetry is the average of the x-intercepts: *x* = (0 + 10)/2 = 5<br /><br />* **v) Vertex:** The x-coordinate of the vertex is the same as the axis of symmetry: *x* = 5. Substitute this into the original equation (or the factored form) to find the y-coordinate: *y* = 9(5)² - 90(5) = 225 - 450 = -225. The vertex is (5, -225).<br /><br />* **vi) Sketch:** The parabola opens upwards (since the coefficient of *x*² is positive). It passes through the points (0,0), (10,0), and has a vertex at (5,-225).<br /><br /><br />**1(b) *y* = 9*x*² - 81**<br /><br />* **i) y-intercept:** Set *x* = 0. *y* = 9(0)² - 81 = -81. The y-intercept is -81.<br /><br />* **ii) Factored form:** *y* = 9(*x*² - 9) = 9(*x* - 3)(*x* + 3) (Difference of squares)<br /><br />* **iii) x-intercepts (zeros):** Set *y* = 0. 9(*x* - 3)(*x* + 3) = 0. This gives *x* = 3 and *x* = -3. The x-intercepts are 3 and -3.<br /><br />* **iv) Axis of symmetry:** *x* = (-3 + 3)/2 = 0<br /><br />* **v) Vertex:** The x-coordinate of the vertex is 0. *y* = 9(0)² - 81 = -81. The vertex is (0, -81).<br /><br />* **vi) Sketch:** The parabola opens upwards and passes through (-3,0), (3,0) with a vertex at (0,-81).<br /><br /><br />**1(c) *y* = 9*x*² + 23*x* - 6**<br /><br />* **i) y-intercept:** Set *x* = 0. *y* = -6.<br /><br />* **ii) Factored form:** This quadratic doesn't factor nicely using integers. We can use the quadratic formula to find the roots and then write it in factored form.<br /><br />* **iii) x-intercepts (zeros):** Use the quadratic formula: x = [-b ± sqrt(b² - 4ac)] / 2a. x = [-23 ± sqrt(23² - 4(9)(-6))] / 18. x = [-23 ± sqrt(529 + 216)] / 18. x = [-23 ± sqrt(745)] / 18. So, x ≈ 0.24 and x ≈ -2.79.<br /><br />* **ii) Factored Form (using the approximate roots):** y ≈ 9(x - 0.24)(x + 2.79) (Note: This is an approximation due to the rounded roots.)<br /><br />* **iv) Axis of symmetry:** *x* ≈ (0.24 - 2.79)/2 ≈ -1.275<br /><br />* **v) Vertex:** *x* ≈ -1.275. Substitute into the original equation: *y* ≈ 9(-1.275)² + 23(-1.275) - 6 ≈ -21.5. Vertex ≈ (-1.275, -21.5)<br /><br />* **vi) Sketch:** Parabola opens upwards, passing through the approximate x-intercepts and with the calculated vertex.<br /><br /><br />**1(d) *y* = 9*x*² + 18*x* - 27**<br /><br />* **i) y-intercept:** -27<br /><br />* **ii) Factored form:** *y* = 9(*x*² + 2*x* - 3) = 9(*x* + 3)(*x* - 1)<br /><br />* **iii) x-intercepts (zeros):** -3 and 1<br /><br />* **iv) Axis of symmetry:** *x* = (-3 + 1)/2 = -1<br /><br />* **v) Vertex:** *x* = -1. *y* = 9(-1)² + 18(-1) - 27 = 9 - 18 - 27 = -36. Vertex is (-1, -36).<br /><br />* **vi) Sketch:** Parabola opens upwards, passing through (-3,0), (1,0) with vertex at (-1,-36).<br />
Click to rate: