Home
/
Math
/
For each value of w , determine whether it is a solution to 6-4 w=14 . multirow(2)(}{ w ) & multicolumn(2)(|c|)( Is it a solution? ) cline ( 2 - 3 ) & Yes & No -5 & & -10 & & 7 & & 4 & &

Question

For each value of w , determine whether it is a solution to 6-4 w=14 . multirow(2)(}{ w ) & multicolumn(2)(|c|)( Is it a solution? ) cline ( 2 - 3 ) & Yes & No -5 & & -10 & & 7 & & 4 & &

For each value of w , determine whether it is a solution to 6-4 w=14 .

 multirow(2)(}{ w ) & multicolumn(2)(|c|)( Is it a solution? ) 
cline ( 2 - 3 ) & Yes & No 
-5 & & 
-10 & & 
 7 & & 
 4 & &

Solution

expert verifiedExpert Verified
4.5(281 Voting)
avatar
MarianaProfessional · Tutor for 6 years

Answer

### <br />\begin{array}{|c|c|c|}<br\ />\hline\ \multirow{2}{}{\ w\ }\ &\ \multicolumn{2}{|c|}{\ Is\ it\ a\ solution?\ }\ \\<br\ />\cline\ {\ 2\ -\ 3\ }\ &\ Yes\ &\ No\ \\<br\ />\hline-5\ &\ &\ X\ \\<br\ />\hline-10\ &\ &\ X\ \\<br\ />\hline\ 7\ &\ &\ X\ \\<br\ />\hline\ 4\ &\ &\ X\ \\<br\ />\hline<br\ />\end{array}

Explain

## Step 1: Understand the equation<br />### The given equation is \(6 - 4w = 14\). We need to determine if each value of \(w\) satisfies this equation.<br /><br />## Step 2: Solve for \(w\)<br />### To find the solution, we solve the equation for \(w\):<br />\[<br />6 - 4w = 14<br />\]<br />Subtract 6 from both sides:<br />\[<br />-4w = 8<br />\]<br />Divide by -4:<br />\[<br />w = -2<br />\]<br /><br />## Step 3: Check each value of \(w\)<br />### Now we will check if each given value of \(w\) satisfies the equation \(6 - 4w = 14\).<br /><br />1. For \(w = -5\):<br />\[<br />6 - 4(-5) = 6 + 20 = 26 \neq 14<br />\]<br />So, \(w = -5\) is not a solution.<br /><br />2. For \(w = -10\):<br />\[<br />6 - 4(-10) = 6 + 40 = 46 \neq 14<br />\]<br />So, \(w = -10\) is not a solution.<br /><br />3. For \(w = 7\):<br />\[<br />6 - 4(7) = 6 - 28 = -22 \neq 14<br />\]<br />So, \(w = 7\) is not a solution.<br /><br />4. For \(w = 4\):<br />\[<br />6 - 4(4) = 6 - 16 = -10 \neq 14<br />\]<br />So, \(w = 4\) is not a solution.
Click to rate: