Question
Evaluate the expression. 2. (2^2)^4 4. 7^-4 5 4^-3cdot 4^-4 6. ((6)/(7))^-1 7. (5^-3)/(5^2) 9. ((5)/(4))^-3 11. 6^0cdot (1)/(4^-3)) 12. (2^3cdot 2^-4)/(2^-3) Simplify the expression. Write your answer with no negative exponents 13. x^4cdot x^5 14. (-2x)^5 16. 200^0c^5 (-2^3x^3)/(2^3) 17. (x^6)/(x^4) 18. (x^-5)/(x^-6) 19. ((-2m^2n)/(3mn^2))^4 20. x^4cdot (1)/(x^3)
Solution
Expert Verified
4.7(375 Voting)
KelvinMaster · Tutor for 5 years
Answer
2. $(2^{2})^{4} = 2^{2\cdot4} = 2^{8} = 256$<br /><br />4. $7^{-4} = \frac{1}{7^4} = \frac{1}{2401}$<br /><br />5. $4^{-3}\cdot 4^{-4} = 4^{-3+(-4)} = 4^{-7} = \frac{1}{4^7} = \frac{1}{16384}$<br /><br />6. $(\frac {6}{7})^{-1} = \frac{7}{6}$<br /><br />7. $\frac {5^{-3}}{5^{2}} = 5^{-3-2} = 5^{-5} = \frac{1}{5^5} = \frac{1}{3125}$<br /><br />9. $(\frac {5}{4})^{-3} = (\frac{4}{5})^{3} = \frac{4^3}{5^3} = \frac{64}{125}$<br /><br />11. $6^{0}\cdot \frac {1}{4^{-3}} = 1 \cdot 4^3 = 64$<br /><br />12. $\frac {2^{3}\cdot 2^{-4}}{2^{-3}} = \frac{2^{3+(-4)}}{2^{-3}} = \frac{2^{-1}}{2^{-3}} = 2^{-1-(-3)} = 2^{2} = 4$<br /><br />13. $x^{4}\cdot x^{5} = x^{4+5} = x^{9}$<br /><br />14. $(-2x)^{5} = (-2)^5 x^5 = -32x^5$<br /><br />16. $200^{0}c^{5} = 1\cdot c^5 = c^5$<br /><br />$\frac {-2^{3}x^{3}}{2^{3}} = -x^3$<br /><br />17. $\frac {x^{6}}{x^{4}} = x^{6-4} = x^{2}$<br /><br />18. $\frac {x^{-5}}{x^{-6}} = x^{-5-(-6)} = x^{-5+6} = x^1 = x$<br /><br />19. $(\frac {-2m^{2}n}{3mn^{2}})^{4} = (\frac{-2m}{3n})^4 = \frac{(-2)^4 m^4}{3^4 n^4} = \frac{16m^4}{81n^4}$<br /><br />20. $x^{4}\cdot \frac {1}{x^{3}} = \frac{x^4}{x^3} = x^{4-3} = x$<br />
Click to rate: