Question
If triangle JKL with vertices at J(3,4),K(7,2) and L(9,3) Is dllated by a scale factor of 2,with (0,1) the center of dilation what are the coordinates of triangle J'K'L' formed? A J'(7,8),K'(19,2) and L'(25,-1) B J'(5,10),K'(17,4) and L'(23,1) c J'(5,6),K'(13,2) and L'(17,0) D J'(4,7),K'(12,3) and L'(16,5)
Solution
Expert Verified
4.2(86 Voting)
PrestonProfessional · Tutor for 6 years
Answer
Here's how to find the coordinates of the dilated triangle:<br /><br />1. **Find the difference in x and y coordinates between each vertex and the center of dilation:**<br /><br /> * J: (3 - 0, 4 - 1) = (3, 3)<br /> * K: (7 - 0, 2 - 1) = (7, 1)<br /> * L: (9 - 0, 3 - 1) = (9, 2)<br /><br />2. **Multiply these differences by the scale factor (2):**<br /><br /> * J': (3 * 2, 3 * 2) = (6, 6)<br /> * K': (7 * 2, 1 * 2) = (14, 2)<br /> * L': (9 * 2, 2 * 2) = (18, 4)<br /><br />3. **Add the scaled differences back to the coordinates of the center of dilation (0, 1):**<br /><br /> * J': (6 + 0, 6 + 1) = (6, 7)<br /> * K': (14 + 0, 2 + 1) = (14, 3)<br /> * L': (18 + 0, 4 + 1) = (18, 5)<br /><br />Therefore, the coordinates of the dilated triangle J'K'L' are J'(6, 7), K'(14, 3), and L'(18, 5). None of the provided multiple-choice options are correct.<br /><br /><br />Final Answer: The final answer is $\boxed{J'(6,7), K'(14,3), L'(18,5)}$<br />
Click to rate: