Home
/
Math
/
Which of the following is equal to (2)/(sqrt (6)-sqrt (2)) A (sqrt (6)+sqrt (2))/(2) B. (1)/(2) C. (sqrt (6)+sqrt (2))/(4) D. (sqrt (6)-sqrt (2))/(2) E. (1)/(sqrt (3)-sqrt (1)) F. (sqrt (6)-sqrt (2))/(4)

Question

Which of the following is equal to (2)/(sqrt (6)-sqrt (2)) A (sqrt (6)+sqrt (2))/(2) B. (1)/(2) C. (sqrt (6)+sqrt (2))/(4) D. (sqrt (6)-sqrt (2))/(2) E. (1)/(sqrt (3)-sqrt (1)) F. (sqrt (6)-sqrt (2))/(4)

Which of the following is equal to (2)/(sqrt (6)-sqrt (2))
A (sqrt (6)+sqrt (2))/(2)
B. (1)/(2)
C. (sqrt (6)+sqrt (2))/(4)
D. (sqrt (6)-sqrt (2))/(2)
E. (1)/(sqrt (3)-sqrt (1))
F. (sqrt (6)-sqrt (2))/(4)

Solution

expert verifiedExpert Verified
4.3(333 Voting)
avatar
VaughnAdvanced · Tutor for 1 years

Answer

### A. $\frac{\sqrt{6} + \sqrt{2}}{2}$

Explain

## Step 1: Rationalizing the Denominator<br />### To simplify the expression, we multiply the numerator and denominator by the conjugate of the denominator, which is $\sqrt{6} + \sqrt{2}$.<br /><br />## Step 2: Multiplication<br />### Multiply the numerator and denominator by the conjugate:<br />$ \frac{2}{\sqrt{6} - \sqrt{2}} \cdot \frac{\sqrt{6} + \sqrt{2}}{\sqrt{6} + \sqrt{2}} = \frac{2(\sqrt{6} + \sqrt{2})}{(\sqrt{6} - \sqrt{2})(\sqrt{6} + \sqrt{2})} $<br /><br />## Step 3: Simplification<br />### Simplify the expression:<br />$ \frac{2(\sqrt{6} + \sqrt{2})}{6 - 2} = \frac{2(\sqrt{6} + \sqrt{2})}{4} = \frac{\sqrt{6} + \sqrt{2}}{2} $
Click to rate: