Home
/
Math
/
Let f(x)=x^2-1 and g(x)=sqrt(x+2) Determine h(x)=f(g(x)) and Simplify

Question

Let f(x)=x^2-1 and g(x)=sqrt(x+2) Determine h(x)=f(g(x)) and Simplify

Let f(x)=x^2-1 and g(x)=sqrt(x+2) Determine h(x)=f(g(x)) and Simplify

Solution

expert verifiedExpert Verified
4.2(199 Voting)
avatar
FinleyAdvanced · Tutor for 1 years

Answer

### $x+1$

Explain

## Step 1: Substitute $g(x)$ into $f(x)$<br />### We are given $f(x) = x^2 - 1$ and $g(x) = \sqrt{x+2}$. To find $h(x) = f(g(x))$, we substitute $g(x)$ into $f(x)$ wherever we see $x$. So, $f(g(x)) = (\sqrt{x+2})^2 - 1$.<br /><br />## Step 2: Simplify the expression<br />### Now we simplify the expression. $(\sqrt{x+2})^2$ simplifies to $x+2$. Therefore, $h(x) = x + 2 - 1$.<br /><br />## Step 3: Combine like terms<br />### Combining like terms, we get $h(x) = x + 1$.
Click to rate: