Home
/
Math
/
A convex surveillance mirror in a convenience store has a focal length of 10.40 m A customer, who is 1.7 all, is standing 4.5 m ir front of the mirror a. Calculate the image distance. b. Calculate the image height

Question

A convex surveillance mirror in a convenience store has a focal length of 10.40 m A customer, who is 1.7 all, is standing 4.5 m ir front of the mirror a. Calculate the image distance. b. Calculate the image height

A convex surveillance mirror in a convenience store has a focal length of 10.40 m A customer, who is 1.7
all, is standing 4.5 m ir front of the mirror a. Calculate the image distance. b. Calculate the image height

Solution

expert verifiedExpert Verified
4.5(192 Voting)
avatar
LaceyProfessional · Tutor for 6 years

Answer

To solve this problem, we will use the mirror equation and magnification formula. The mirror equation is given by:<br /><br />\[<br />\frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i}<br />\]<br /><br />where:<br />- \( f \) is the focal length of the mirror,<br />- \( d_o \) is the object distance (distance from the object to the mirror),<br />- \( d_i \) is the image distance (distance from the image to the mirror).<br /><br />The magnification \( m \) is given by:<br /><br />\[<br />m = -\frac{d_i}{d_o} = \frac{h_i}{h_o}<br />\]<br /><br />where:<br />- \( h_i \) is the image height,<br />- \( h_o \) is the object height.<br /><br />Given:<br />- Focal length \( f = -0.40 \, \text{m} \) (negative for convex mirrors),<br />- Object distance \( d_o = 4.5 \, \text{m} \),<br />- Object height \( h_o = 1.7 \, \text{m} \).<br /><br />### a. Calculate the image distance (\( d_i \))<br /><br />Using the mirror equation:<br /><br />\[<br />\frac{1}{-0.40} = \frac{1}{4.5} + \frac{1}{d_i}<br />\]<br /><br />First, calculate \(\frac{1}{4.5}\):<br /><br />\[<br />\frac{1}{4.5} \approx 0.2222<br />\]<br /><br />Now substitute into the equation:<br /><br />\[<br />-\frac{1}{0.40} = 0.2222 + \frac{1}{d_i}<br />\]<br /><br />\[<br />-2.5 = 0.2222 + \frac{1}{d_i}<br />\]<br /><br />Subtract 0.2222 from both sides:<br /><br />\[<br />-2.7222 = \frac{1}{d_i}<br />\]<br /><br />Now take the reciprocal to find \( d_i \):<br /><br />\[<br />d_i \approx -\frac{1}{2.7222} \approx -0.3673 \, \text{m}<br />\]<br /><br />The negative sign indicates that the image is virtual and located on the same side of the mirror as the object.<br /><br />### b. Calculate the image height (\( h_i \))<br /><br />Using the magnification formula:<br /><br />\[<br />m = -\frac{d_i}{d_o} = \frac{h_i}{h_o}<br />\]<br /><br />Substitute the known values:<br /><br />\[<br />m = -\frac{-0.3673}{4.5} \approx 0.0816<br />\]<br /><br />Now calculate the image height:<br /><br />\[<br />h_i = m \times h_o = 0.0816 \times 1.7 \approx 0.1387 \, \text{m}<br />\]<br /><br />Thus, the image height is approximately \( 0.1387 \, \text{m} \).
Click to rate: