Question
What is the factored form for the following cubic function? Q (x+3)(x-3)(x-4) x(x-3)(x+4) x(x+3)(x+4) 2x(x-3)(x-4)
Solution
Expert Verified
4.0(280 Voting)
PercyAdvanced · Tutor for 1 years
Answer
### The factored form is $x(x-3)(x+4)$.
Explain
## Step 1: Identify the given cubic functions<br />### We are given four different cubic functions to factor.<br />## Step 2: Expand each function<br />### Expand each of the given cubic functions to determine their forms.<br /><br />1. $(x+3)(x-3)(x-4)$:<br />\[<br />(x^2 - 9)(x - 4) = x^3 - 4x^2 - 9x + 36<br />\]<br /><br />2. $x(x-3)(x+4)$:<br />\[<br />x(x^2 + x - 12) = x^3 + x^2 - 12x<br />\]<br /><br />3. $x(x+3)(x+4)$:<br />\[<br />x(x^2 + 7x + 12) = x^3 + 7x^2 + 12x<br />\]<br /><br />4. $2x(x-3)(x-4)$:<br />\[<br />2x(x^2 - 7x + 12) = 2x^3 - 14x^2 + 24x<br />\]<br /><br />## Step 3: Compare expanded forms<br />### Compare the expanded forms to identify the correct factored form.
Click to rate: