Home
/
Math
/
7. Simplify, State any restrictions on the variables. (3)/(x+1)+(1)/(x^2)-3x-4 b) (2t)/(t-4)-(5t)/(t^2)-16 c) (3)/(t^2)+t-6+(5)/((t+3)^2) d) (4x)/(x^2)+6x+8-(3x)/(x^2)-3x-10 c) (x-1)/(x^2)-9+(x+7)/(x^2)-5x+6 (2t+1)/(2t^2)-14t+24+(5t)/(4t^2)-8t-12

Question

7. Simplify, State any restrictions on the variables. (3)/(x+1)+(1)/(x^2)-3x-4 b) (2t)/(t-4)-(5t)/(t^2)-16 c) (3)/(t^2)+t-6+(5)/((t+3)^2) d) (4x)/(x^2)+6x+8-(3x)/(x^2)-3x-10 c) (x-1)/(x^2)-9+(x+7)/(x^2)-5x+6 (2t+1)/(2t^2)-14t+24+(5t)/(4t^2)-8t-12

7. Simplify, State any restrictions on the variables.
(3)/(x+1)+(1)/(x^2)-3x-4
b) (2t)/(t-4)-(5t)/(t^2)-16
c) (3)/(t^2)+t-6+(5)/((t+3)^2)
d) (4x)/(x^2)+6x+8-(3x)/(x^2)-3x-10
c) (x-1)/(x^2)-9+(x+7)/(x^2)-5x+6
(2t+1)/(2t^2)-14t+24+(5t)/(4t^2)-8t-12

Solution

expert verifiedExpert Verified
4.7(253 Voting)
avatar
WilliamMaster · Tutor for 5 years

Answer

### a) $\frac{4x-11}{(x+1)(x-4)}$, $x \ne -1, 4$<br />### b) $\frac{2t^2+3t}{(t-4)(t+4)}$, $t \ne \pm 4$<br />### c) $\frac{8t+24}{(t+3)^2(t-2)}$, $t \ne -3, 2$<br />### d) $\frac{x(x+42)}{(x+4)(x+2)(x-5)}$, $x \ne -4, -2, 5$<br />### e) $\frac{2x^2+x-19}{(x-3)(x+3)(x-2)}$, $x \ne \pm 3, 2$<br />### f) $\frac{12t^2-26t-3}{4(t-3)(t-4)(t+1)}$, $t \ne 3, 4, -1$

Explain

## Step 1: Factor the denominators<br />### Factor each denominator to find the least common denominator (LCD). For example, $x^2 - 3x - 4 = (x-4)(x+1)$ and $t^2 - 16 = (t-4)(t+4)$. Similarly, $t^2 + t - 6 = (t+3)(t-2)$, $x^2 + 6x + 8 = (x+4)(x+2)$, $x^2 - 3x - 10 = (x-5)(x+2)$, $x^2 - 9 = (x-3)(x+3)$, $x^2 - 5x + 6 = (x-2)(x-3)$, $2t^2 - 14t + 24 = 2(t-3)(t-4)$, and $4t^2 - 8t - 12 = 4(t-3)(t+1)$.<br /><br />## Step 2: Find the least common denominator (LCD)<br />### Identify the LCD by considering all unique factors in the denominators. For a), the LCD is $(x+1)(x-4)$. For b), the LCD is $(t-4)(t+4)$. For c), the LCD is $(t+3)^2(t-2)$. For d), the LCD is $(x+4)(x+2)(x-5)$. For e), the LCD is $(x-3)(x+3)(x-2)$. For f), the LCD is $4(t-3)(t-4)(t+1)$.<br /><br />## Step 3: Rewrite each fraction with the LCD<br />### Multiply each fraction by a form of 1 so that each fraction has the LCD. For example, in a), multiply $\frac{3}{x+1}$ by $\frac{x-4}{x-4}$.<br /><br />## Step 4: Combine the numerators<br />### Add or subtract the numerators over the common denominator. Simplify the resulting numerator by combining like terms.<br /><br />## Step 5: Simplify the resulting fraction<br />### Factor the numerator if possible and cancel any common factors between the numerator and denominator.<br /><br />## Step 6: State any restrictions<br />### Identify any values of the variable that would make the denominator zero in the original expression or any intermediate step. These values are the restrictions on the variable.
Click to rate: