Home
/
Math
/
For each value of u , determine whether it is a solution to (u)/(4)-6=-14 . multirow(2)(*)( u ) & multicolumn(2)(|c|)( Is it a solution? ) cline ( 2 - 3 ) & Yes & No 12 & 0 & 0 -28 & 0 & 0 -24 & 0 & 0 36 & 0 & 0

Question

For each value of u , determine whether it is a solution to (u)/(4)-6=-14 . multirow(2)(*)( u ) & multicolumn(2)(|c|)( Is it a solution? ) cline ( 2 - 3 ) & Yes & No 12 & 0 & 0 -28 & 0 & 0 -24 & 0 & 0 36 & 0 & 0

For each value of u , determine whether it is a solution to (u)/(4)-6=-14 .

 multirow(2)(*)( u ) & multicolumn(2)(|c|)( Is it a solution? ) 
cline ( 2 - 3 ) & Yes & No 
 12 & 0 & 0 
-28 & 0 & 0 
-24 & 0 & 0 
 36 & 0 & 0

Solution

expert verifiedExpert Verified
4.6(203 Voting)
avatar
EloisaMaster · Tutor for 5 years

Answer

### <br />\begin{array}{|c|c|c|}<br\ />\hline\ \multirow{2}{*}{\ u\ }\ &\ \multicolumn{2}{|c|}{\ Is\ it\ a\ solution?\ }\ \\<br\ />\cline\ {\ 2\ -\ 3\ }\ &\ Yes\ &\ No\ \\<br\ />\hline\ 12\ &\ \ &\ X\ \\<br\ />\hline-28\ &\ \ &\ X\ \\<br\ />\hline-24\ &\ \ &\ X\ \\<br\ />\hline\ 36\ &\ \ &\ X\ \\<br\ />\hline<br\ />\end{array}

Explain

## Step 1: Understand the given equation<br />### The equation provided is $\frac{u}{4} - 6 = -14$. We need to determine if each value of $u$ satisfies this equation.<br /><br />## Step 2: Solve the equation for $u$<br />### To solve $\frac{u}{4} - 6 = -14$, we first isolate $\frac{u}{4}$ by adding 6 to both sides of the equation:<br />\[<br />\frac{u}{4} - 6 + 6 = -14 + 6<br />\]<br />\[<br />\frac{u}{4} = -8<br />\]<br /><br />### Next, we solve for $u$ by multiplying both sides by 4:<br />\[<br />u = -8 \times 4<br />\]<br />\[<br />u = -32<br />\]<br /><br />## Step 3: Check each value of $u$ in the table<br />### We will substitute each value of $u$ from the table into the equation $\frac{u}{4} - 6 = -14$ to see if it holds true.<br /><br />### For $u = 12$:<br />\[<br />\frac{12}{4} - 6 = 3 - 6 = -3 \quad (\text{not equal to } -14)<br />\]<br />### Therefore, $u = 12$ is not a solution.<br /><br />### For $u = -28$:<br />\[<br />\frac{-28}{4} - 6 = -7 - 6 = -13 \quad (\text{not equal to } -14)<br />\]<br />### Therefore, $u = -28$ is not a solution.<br /><br />### For $u = -24$:<br />\[<br />\frac{-24}{4} - 6 = -6 - 6 = -12 \quad (\text{not equal to } -14)<br />\]<br />### Therefore, $u = -24$ is not a solution.<br /><br />### For $u = 36$:<br />\[<br />\frac{36}{4} - 6 = 9 - 6 = 3 \quad (\text{not equal to } -14)<br />\]<br />### Therefore, $u = 36$ is not a solution.<br /><br />### None of the values in the table satisfy the equation $\frac{u}{4} - 6 = -14$.
Click to rate: