Home
/
Math
/
f(x)=3x^3 g(x)=2x^2+x-6 What is (fcdot g)(x) A. (fcdot g)(x)=6x^5+3x^4-18x^3 B. (fcdot g)(x)=6x^2+3x-18 C. (fcdot g)(x)=2x^5+x^4-6x^3 D(t,a)(m) 6,6,2,4,18,3

Question

f(x)=3x^3 g(x)=2x^2+x-6 What is (fcdot g)(x) A. (fcdot g)(x)=6x^5+3x^4-18x^3 B. (fcdot g)(x)=6x^2+3x-18 C. (fcdot g)(x)=2x^5+x^4-6x^3 D(t,a)(m) 6,6,2,4,18,3

f(x)=3x^3
g(x)=2x^2+x-6
What is (fcdot g)(x)
A. (fcdot g)(x)=6x^5+3x^4-18x^3
B. (fcdot g)(x)=6x^2+3x-18
C. (fcdot g)(x)=2x^5+x^4-6x^3
D(t,a)(m) 6,6,2,4,18,3

Solution

expert verifiedExpert Verified
4.1(398 Voting)
avatar
AliceElite · Tutor for 8 years

Answer

### A. $(f\cdot g)(x)=6x^{5}+3x^{4}-18x^{3}$

Explain

## Step 1: Setup the multiplication<br />### We are asked to find $(f \cdot g)(x)$, which is equivalent to $f(x) \cdot g(x)$. We are given $f(x) = 3x^3$ and $g(x) = 2x^2 + x - 6$.<br /><br />## Step 2: Perform the multiplication<br />### Substitute the expressions for $f(x)$ and $g(x)$ into the product: $(f \cdot g)(x) = (3x^3)(2x^2 + x - 6)$. Distribute $3x^3$ to each term in the parenthesis: $3x^3 \cdot 2x^2 + 3x^3 \cdot x - 3x^3 \cdot 6$.<br /><br />## Step 3: Simplify the expression<br />### Multiply the terms: $6x^5 + 3x^4 - 18x^3$.
Click to rate: