Question
Show that is a conservative force field overrightarrow (F)=(2xy+z^3)overrightarrow (i)+x^2overrightarrow (j)+3xz^2overrightarrow (k) . Find the scalar potential and the work done in moving an object in this field from (1,-2,1) to (3,1,4) Exercice 9: Given a vector field defined by overrightarrow (F)=4xzoverrightarrow (i)-y^2overrightarrow (j)+yzoverrightarrow (k) . Evaluate the flux of overrightarrow (F) over the surface bounded by x=0,x=1,y=0,y=1,z=0,z=1
Solution
Expert Verified
4.5(247 Voting)
RogerMaster · Tutor for 5 years
Answer
Pour montrer que $\overrightarrow{F}=(2xy+z^3)\overrightarrow{i}+x^2\overrightarrow{j}+3xz^2\overrightarrow{k}$ est un champ de force conservatif, il faut démontrer que son rotationnel est nul. Calculons le rotationnel :<br /><br />$rot(\overrightarrow{F}) = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2xy+z^3 & x^2 & 3xz^2 \end{vmatrix} = (0-0)\overrightarrow{i} - (3z^2-3z^2)\overrightarrow{j} + (2x-2x)\overrightarrow{k} = \overrightarrow{0}$<br /><br />Le rotationnel étant nul, le champ $\overrightarrow{F}$ est conservatif.<br /><br />Pour trouver le potentiel scalaire $\phi$, on a :<br /><br />$\frac{\partial \phi}{\partial x} = 2xy + z^3$ => $\phi = x^2y + xz^3 + f(y,z)$<br /><br />$\frac{\partial \phi}{\partial y} = x^2$ => $\phi = x^2y + g(x,z)$<br /><br />$\frac{\partial \phi}{\partial z} = 3xz^2$ => $\phi = xz^3 + h(x,y)$<br /><br />En comparant ces trois expressions, on déduit que $\phi(x,y,z) = x^2y + xz^3 + C$, où C est une constante.<br /><br />Le travail effectué pour déplacer un objet dans ce champ de (1,-2,1) à (3,1,4) est donné par la différence de potentiel :<br /><br />$W = \phi(3,1,4) - \phi(1,-2,1) = (3^2 \cdot 1 + 3 \cdot 4^3) - (1^2 \cdot (-2) + 1 \cdot 1^3) = (9 + 192) - (-2 + 1) = 201 + 1 = 202$<br /><br /><br />**Exercice 9:**<br /><br />Pour calculer le flux de $\overrightarrow{F}=4xz\overrightarrow{i}-y^{2}\overrightarrow{j}+yz\overrightarrow{k}$ à travers la surface définie par $x=0, x=1, y=0, y=1, z=0, z=1$, on utilise le théorème de la divergence :<br /><br />$Flux = \iiint_V div(\overrightarrow{F}) \, dV$<br /><br />$div(\overrightarrow{F}) = \frac{\partial(4xz)}{\partial x} + \frac{\partial(-y^2)}{\partial y} + \frac{\partial(yz)}{\partial z} = 4z - 2y + y = 4z - y$<br /><br />Le volume V est le cube unitaire. Donc :<br /><br />$Flux = \int_0^1 \int_0^1 \int_0^1 (4z - y) \, dx \, dy \, dz = \int_0^1 \int_0^1 [(4z - y)x]_0^1 \, dy \, dz = \int_0^1 \int_0^1 (4z - y) \, dy \, dz$<br /><br />$Flux = \int_0^1 [4zy - \frac{y^2}{2}]_0^1 \, dz = \int_0^1 (4z - \frac{1}{2}) \, dz = [2z^2 - \frac{1}{2}z]_0^1 = 2 - \frac{1}{2} = \frac{3}{2}$<br /><br />Le flux de $\overrightarrow{F}$ à travers la surface est donc $\frac{3}{2}$.<br />
Click to rate: