Question
5. Dila melakukan percobaan gelombang dan diperoleh hasil sebagai berikut. Perc ke- & mathrm(T)(mathrm(s)) & lambda(mathrm(m)) & v(mathrm(~m) / mathrm(s)) 1 & 1 & 1 & ldots 2 & 2 & 1 & ldots 3 & 3 & 1 & ldots 4 & 4 & 1 & ldots 5 & 5 & 2 & ldots 6 & 5 & 3 & ldots 7 & 5 & 4 & ldots 8 & 5 & 5 & ldots Hitunglah cepat rambat gelombang (v) pada percobaan di atas! Analisislah dan simpulkan bagaimana hubungan periode dan panjang gelombang terhadap cepat rambat gelombang!
Solution
Expert Verified
4.4(266 Voting)
MiriamMaster · Tutor for 5 years
Answer
### Cepat rambat gelombang (v) pada percobaan di atas adalah sebagai berikut:<br />1. Perc ke-1: \( 1 \, \text{m/s} \)<br />2. Perc ke-2: \( 0.5 \, \text{m/s} \)<br />3. Perc ke-3: \( 0.33 \, \text{m/s} \)<br />4. Perc ke-4: \( 0.25 \, \text{m/s} \)<br />5. Perc ke-5: \( 0.4 \, \text{m/s} \)<br />6. Perc ke-6: \( 0.6 \, \text{m/s} \)<br />7. Perc ke-7: \( 0.8 \, \text{m/s} \)<br />8. Perc ke-8: \( 1 \, \text{m/s} \)<br /><br />### Hubungan antara periode dan panjang gelombang terhadap cepat rambat gelombang adalah bahwa cepat rambat gelombang berbanding lurus dengan panjang gelombang dan berbanding terbalik dengan periode.
Explain
## Step 1: Understanding the Relationship<br />### The velocity \( v \) of a wave is related to its wavelength \( \lambda \) and period \( T \) by the formula:<br />\[<br />v = \frac{\lambda}{T}<br />\]<br /><br />## Step 2: Calculating Velocity for Each Row<br />### Using the given table data, we can calculate the velocity \( v \) for each row where \( \lambda \) and \( T \) are provided.<br /><br />### For Row 1:<br />\[<br />v_1 = \frac{\lambda_1}{T_1} = \frac{1 \, \text{m}}{1 \, \text{s}} = 1 \, \text{m/s}<br />\]<br /><br />### For Row 2:<br />\[<br />v_2 = \frac{\lambda_2}{T_2} = \frac{1 \, \text{m}}{2 \, \text{s}} = 0.5 \, \text{m/s}<br />\]<br /><br />### For Row 3:<br />\[<br />v_3 = \frac{\lambda_3}{T_3} = \frac{1 \, \text{m}}{3 \, \text{s}} = 0.33 \, \text{m/s}<br />\]<br /><br />### For Row 4:<br />\[<br />v_4 = \frac{\lambda_4}{T_4} = \frac{1 \, \text{m}}{4 \, \text{s}} = 0.25 \, \text{m/s}<br />\]<br /><br />### For Row 5:<br />\[<br />v_5 = \frac{\lambda_5}{T_5} = \frac{2 \, \text{m}}{5 \, \text{s}} = 0.4 \, \text{m/s}<br />\]<br /><br />### For Row 6:<br />\[<br />v_6 = \frac{\lambda_6}{T_6} = \frac{3 \, \text{m}}{5 \, \text{s}} = 0.6 \, \text{m/s}<br />\]<br /><br />### For Row 7:<br />\[<br />v_7 = \frac{\lambda_7}{T_7} = \frac{4 \, \text{m}}{5 \, \text{s}} = 0.8 \, \text{m/s}<br />\]<br /><br />### For Row 8:<br />\[<br />v_8 = \frac{\lambda_8}{T_8} = \frac{5 \, \text{m}}{5 \, \text{s}} = 1 \, \text{m/s}<br />\]<br /><br />## Step 3: Analyzing the Relationship<br />### From the calculations, we observe that:<br />- When the period \( T \) increases while the wavelength \( \lambda \) remains constant (Rows 1 to 4), the velocity \( v \) decreases.<br />- When the period \( T \) remains constant while the wavelength \( \lambda \) increases (Rows 5 to 8), the velocity \( v \) increases.<br /><br />### Conclusion:<br />The velocity \( v \) of a wave is directly proportional to its wavelength \( \lambda \) and inversely proportional to its period \( T \).
Click to rate: