Question
A student determined that the density of a sample of tin is 8.00g/mL when the actual density of tin is 7.28g/mL. What was 91% 9.0% 9.9% 0.72%
Solution
Expert Verified
4.2(248 Voting)
JoelExpert · Tutor for 3 years
Answer
To determine the percentage error in the student's measurement, we use the formula for **percentage error**:<br /><br />\[<br />\text{Percentage Error} = \left| \frac{\text{Measured Value} - \text{Actual Value}}{\text{Actual Value}} \right| \times 100<br />\]<br /><br />### Given:<br />- Measured value = \( 8.00 \, \text{g/mL} \)<br />- Actual value = \( 7.28 \, \text{g/mL} \)<br /><br />### Step-by-step solution:<br />1. Subtract the actual value from the measured value:<br /> \[<br /> 8.00 - 7.28 = 0.72<br /> \]<br /><br />2. Divide the difference by the actual value:<br /> \[<br /> \frac{0.72}{7.28} \approx 0.0989<br /> \]<br /><br />3. Multiply by 100 to convert to a percentage:<br /> \[<br /> 0.0989 \times 100 \approx 9.89\%<br /> \]<br /><br />4. Round to one decimal place:<br /> \[<br /> \text{Percentage Error} \approx 9.9\%<br /> \]<br /><br />### Final Answer:<br />The percentage error is **\( 9.9\% \)**.<br /><br />
Click to rate: